Expanders that Beat the Eigenvalue Bound: Explicit Construction

نویسندگان

  • Avi Wigderson
  • David Zuckerman
چکیده

For every n and 0 < δ < 1, we construct graphs on n nodes such that every two sets of size n share an edge, having essentially optimal maximum degree n1−δ+o(1). Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n comparisons. 2. A k round selection algorithm using n −1)+o(1) comparisons. 3. A depth 2 superconcentrator of size n. 4. A depth k wide-sense nonblocking generalized connector of size n. All of these results improve on previous constructions by factors of n, and are optimal to within factors of n. These results are based on an improvement to the extractor construction of Nisan & Zuckerman: our algorithm extracts an asymptotically optimal number of random bits from a defective random source using a small additional number of truly random bits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanders that Beat the Eigenvalue Bound : Explicit

For every n and 0 < < 1, we construct graphs on n nodes such that every two sets of size n share an edge, having essentially optimal maximum degree n 1?+o(1). Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k+o(1) comparisons. 2. A k round selection algorithm using n 1+1=(2 k ?1)+o(1) comparisons. 3. A depth 2 superconcentrat...

متن کامل

On Construction of Almost-Ramanujan Graphs

Reingold et al. introduced the notion zig-zag product on two different graphs, and presented a fully explicit construction of dregular expanders with the second largest eigenvalue O(d−1/3). In the same paper, they ask whether or not the similar technique can be used to construct expanders with the second largest eigenvalue O(d−1/2). Such graphs are called Ramanujan graphs. Recently, zig-zag pro...

متن کامل

Lecture 23

Today we examine the zig-zag product introduced by Reingold, Vadhan, and Wigder­ son [2] and Capalbo, Reingold, Vadhan, and Wigderson [1]. The product leads to a remarkable constructioon of expander graphs needed in the Spiser-Spielman code. In addition, their works introduce a probabilistic viewpoint of expansion. In previous liter­ ature, the spectral techniques are used to analyze the expans...

متن کامل

Lecture 24

Today we examine the zig-zag product introduced by Reingold, Vadhan, and Wigderson [2] and Capalbo, Reingold, Vadhan, and Wigderson [1]. The product leads to a remarkable constructioon of expander graphs needed in the Spiser-Spielman code. In addition, their works introduce a probabilistic viewpoint of expansion. In previous literature, the spectral techniques are used to analyze the expansion ...

متن کامل

An Explicit Construction of Quantum Expanders

Quantum expanders are a natural generalization of classical expanders. These objects were introduced and studied by [1, 3, 4]. In this note we show how to construct explicit, constant-degree quantum expanders. The construction is essentially the classical Zig-Zag expander construction of [5], applied to quantum expanders.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017